

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

Course Syllabus Study Plan 2017: Communication Track

Course Code	Course Name	Credits	Contact Hours
0401564	Opto Electronics	3	3 T

INSTRUCTOR/COORDINATOR			
Name	Dr. Aser M. Matarneh		
Email	aser.matarneh@mutah.edu.jo		
Office Hours	10:00-11:00 (Sun, Tues, Thur)		

TEXTBOOK				
Title Fiber Optics Communications. <i>Pearson</i> , 2008, 3 rd ed.				
Author/Year/Edition	S. O. Kasap			
Other Supplemental Materials				
Title Optoelectronics and Photonics: Principles and Practices, Prentice Hall.				
Author/Year/Edition	Senior, J. M.			

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

The course is to provide both an analytical and a physical understanding of Optoelectronic devices, with particular emphasis on Semiconductor Lasers, Light Meeting Diodes (LED), Photodetectors, Optical Amplifiers, Phototransisitors, and basic introduction to Solar Cells. Their characteristics, principle of operations and some practical applications in different aspects will be discussed.

B. Pre-requisites (P) or Co-requisites (C)

Electronics (2) (0401362) (P)

C. Course Type (Required or Elective)

Elective

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

- **CLO 1. Understand** the light conversion and the physics of semiconductor Lasers and LED [1].
- CLO 2. Explain the working principle of light sources and optical amplification process [1].
- **CLO 3. Discuss** the photodetection process in optolectronic devices [1].
- **CLO 4. Analyze and differentiate** between photodetectors and solar cells [2].
- **CLO 5. Present and discuss** different scenarios related to the latest topics on Optoelectronics [7].

B. Student Learning Outcomes (SOs) Addressed by the Course

1	2	3	4	5	6	7
✓	✓					✓

BRIEF LIST OF TOPICS TO BE COVERED		
List of Topics	No. of Weeks	Contact Hours
Introduction to the lightwave		
 Light waves in a homogeneous medium 		
 Refractive index, phase velocity, and Group velocity 	2	6
 Energy flow and Irradiance 	2	0
• Snell's law		
Polarization of light		
Semiconductors pn junction and light emitting diodes	1	3
Stimulated emission process		
Light Amplification Process	2	6
 Types of optical sources: LED and Lasers 	2	U
Semiconductor Lasers		
• Laser types		
 characteristics 	3	9
 Single and multimode lasers 	3	9
 Laser rate equations 		
• Application		
Semiconductor Optical Amplifiers	1	3
Photodetectors: PIN photodetector		
 Function and layers 		3
• Structure	1	3
Analysis and applications		
Photodetectors: APD photodetectors	1	3
 Function and layers 	1	3

Structure			
 Analysis and applications 			
Phototransistor:			
Principle of operation		1	3
Structure		1	3
 Analysis and applications 			
Solar Cells			
Basics operation		2	6
Structure		2	6
 Comparison with conventional photodetectors 			
	Total	14	42

EVALUATION				
Assessment Tool	Due Date	Weight (%)		
Mid Exam	According to the university calendar	30		
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20		
Final Exam	According to the university calendar	50		

ABET's Students Learning Outcomes (Criterion # 3)					
	Relationship to program outcomes				
ABET 1-7		Engineering Student Outcomes			
1	1	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics			
2	1	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.			
3		an ability to communicate effectively with a range of audiences.			
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.			
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.			
6		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.			
7	V	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.			